d0l — Quadrature dO01spc

NAG C Library Function Document

nag 1d quad wt alglog 1 (dO1spc)

1 Purpose

nag 1d quad wt alglog 1 (dOlspc) is an adaptive integrator which calculates an approximation to the
integral of a function g(z)w(zx) over a finite interval [a, b]:

I= /ab g(x)w(x) dx

where the weight function w has end-point singularities of algebraico-logarithmic type.

2 Specification

#include <nag.h>
#include <nagd0l.h>

void nag_1ld_quad_wt_alglog_1 (double (*g) (double x, Nag_User *comm),
double a, double b, double alfa, double beta,
Nag_QuadWeight wt_func, double epsabs, double epsrel,
Integer max_num_subint, double *result, double *abserr,
NAG_QuadProgress *qgp, NAG_User *comm, NagError *fail)

3 Description

This function is based upon the QUADPACK routine QAWSE (Piessens et al. (1983)) and integrates a
function of the form g(z)w(x), where the weight function w(z) may have algebraico-logarithmic
singularities at the end-points a and/or b. The strategy is a modification of that in nag 1d quad osc 1
(d01skc). We start by bisecting the original interval and applying modified Clenshaw—Curtis integration of
orders 12 and 24 to both halves. Clenshaw—Curtis integration is then used on all sub-intervals which have
a or b as one of their end-points (Piessens et al. (1974)). On the other sub-intervals Gauss—Kronrod (7-15
point) integration is carried out.

A ‘global’ acceptance criterion (as defined by Malcolm and Simpson (1976)) is used. The local error
estimation control is described by Piessens et al. (1983).

4 Parameters
1: g — function supplied by user Function
The function g, supplied by the user, must return the value of the function g at a given point.

The specification of g is:

double g(double x, Nag_User *comm)

I: x — double Input

On entry: the point at which the function g must be evaluated.

[NP3491/6] d0lspe.1

dO01spc NAG C Library Manual

2: comm — Nag User *

On entry/on exit: pointer to a structure of type Nag User with the following member:

p — Pointer Input/Output

On entry/on exit: the pointer comm—p should be cast to the required type, e.g.,
struct user *s = (struct user *)comm->p, to obtain the original object’s
address with appropriate type. (See the argument comm below.)

2: a — double Input

On entry: the lower limit of integration, a.

3: b — double Input
On entry: the upper limit of integration, b.

Constraint: b > a.

4: alfa — double Input
On entry: the parameter « in the weight function.

Constraint: alfa > —1.0.

5: beta — double Input
On entry: the parameter § in the weight function.

Constraint: beta > —1.0.

6: wt_func — Nag_QuadWeight Input
On entry: indicates which weight function is to be used:
if wt_func = Nag_Alg, w(z) = (z — a)"(b—2)";
if wt_func = Nag_Alg loga, w(z) = (z — a)®(b — 2)’In(z — a);
if wt_func = Nag_Alg logb, w(z) = (z — a)"(b—)" In(b —
if wt_func = Nag_Alg loga logb, w(z) = (z — a)*(b — z)’In(z — a)in(b —).

x);

Constraint: wt_func = Nag_Alg, Nag Alg loga, Nag Alg logh, or Nag_ Alg loga logb.

7: epsabs — double Input
On entry: the absolute accuracy required. If epsabs is negative, the absolute value is used. See
Section 6.1.

8: epsrel — double Input
On entry: the relative accuracy required. If epsrel is negative, the absolute value is used. See
Section 6.1.

9: max_num_subint — Integer Input

On entry: the upper bound on the number of sub-intervals into which the interval of integration may
be divided by the function. The more difficult the integrand, the larger max_num_subint should
be.

Suggested values: a value in the range 200 to 500 is adequate for most problems.

Constraint: max_num_subint > 2.

d0lspc.2 [NP3491/6]

d0l — Quadrature dO01spc

10:

12:

5

result — double * Output

On exit: the approximation to the integral I.

abserr — double * Output
On exit: an estimate of the modulus of the absolute error, which should be an upper bound for
|I—result|.

qp — Nag_QuadProgress *

Pointer to structure of type Nag_QuadProgress with the following members:

num_subint — Integer Output

On exit: the actual number of sub-intervals used.

fun_count — Integer Output

On exit: the number of function evaluations performed by nag 1d quad wt alglog 1.

sub_int beg pts — double * Output
sub_int end_pts — double * Output
sub_int_result — double * Output
sub_int_error — double * Output

On exit: these pointers are allocated memory internally with max_num_subint elements. If
an error exit other than NE_INT_ARG_LT, NE_ BAD PARAM, NE_REAL ARG LE,
NE_2 REAL_ARG_LE or NE_ALLOC_FAIL occurs, these arrays will contain informa-
tion which may be useful. For details, see Section 6.

Before a subsequent call to nag 1d quad wt alglog 1 is made, or when the information
contained in these arrays is no longer useful, the user should free the storage allocated by
these pointers using the NAG macro NAG_FREE.

comm — Nag User *

On entry/on exit: pointer to a structure of type Nag User with the following member:

p — Pointer Input/Output

On entry/on exit: the pointer p, of type Pointer, allows the user to communicate information
to and from the user-defined function g(). An object of the required type should be declared
by the user, e.g., a structure, and its address assigned to the pointer p by means of a cast to
Pointer in the calling program, e.g., comm.p = (Pointer)ss. The type Pointer is void *.
fail — NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

Users are recommended to declare and initialise fail and set fail.print = TRUE for this function.

Error Indicators and Warnings

NE_INT_ARG_LT

On entry, max_num_subint must not be less than 2: max_num_subint = <value>.

NE_BAD_PARAM

On entry, parameter wt_func had an illegal value.

[NP3491/6] d0lspe.3

dO01spc NAG C Library Manual

NE_REAL_ARG_LE
On entry, alfa must not be less than or equal to —1.0: alfa = <value>.
On entry, beta must not be less than or equal to —1.0: beta = <value>.
NE_2 REAL_ARG_LE

On entry, b = <value> while a = <value>. These parameters must satisfy b > a.

NE_ALLOC_FAIL

Memory allocation failed.

NE_QUAD_MAX_SUBDIV

The maximum number of subdivisions has been reached: max_num_subint = <value>.

The maximum number of subdivisions has been reached without the accuracy requirements being
achieved. Look at the integrand in order to determine the integration difficulties. If the position of a
discontinuity or a singularity of algebraico-logarithmic type within the interval can be determined,
the interval must be split up at this point and the integrator called on the sub-intervals. If necessary,
another integrator, which is designed for handling the type of difficulty involved, must be used.
Alternatively, consider relaxing the accuracy requirements specified by epsabs and epsrel, or
increasing the value of max num_subint.

NE_QUAD_ROUNDOFF_TOL

Round-off error prevents the requested tolerance from being achieved: epsabs = <value>,
epsrel = <value>.

The error may be underestimated. Consider relaxing the accuracy requirements specified by epsabs
and epsrel.

NE_QUAD_BAD_SUBDIV

Extremely bad integrand behaviour occurs around the sub-interval (<value>, <value>).
The same advice applies as in the case of NE_QUAD_MAX_SUBDIV.

6 Further Comments
The time taken by nag 1d quad wt alglog 1 depends on the integrand and the accuracy required.

If the function fails with an error exit other than NE_INT_ARG_LT, NE_BAD_PARAM,
NE_REAL_ARG _LE, NE 2 REAL ARG _LE or NE_ ALLOC_FAIL then the user may wish to
examine the contents of the structure qp. These contain the end-points of the sub-intervals used by
nag 1d quad wt alglog 1 along with the integral contributions and error estimates over these sub-
intervals.

Specifically, for ¢ = 1,2,...,n, let r; denote the approximation to the value of the integral over the sub-
interval [a;, b;] in the partition of [a,b] and e; be the corresponding absolute error estimate.

Then, fi’ g(z)w(z) dz ~r; and result = Y " r;.

The value of n is returned in num_subint, and the values a;, b;, r; and e; are stored in the structure qp as
a; = sub_int_beg pts[i — 1],
b, = sub_int_end_pts[i — 1],
r; = sub_int_result[; — 1] and

e; = sub_int_error[i — 1].

d01spc.4 [NP3491/6]

d0l — Quadrature dO01spc

6.1 Accuracy
The function cannot guarantee, but in practice usually achieves, the following accuracy:
|I — result| < tol
where
tol = max{|epsabs|, |epsrel| x ||}

and epsabs and epsrel are user-specified absolute and relative error tolerances. Moreover it returns the
quantity abserr which, in normal circumstances, satisfies

|I — result| < abserr < tol.

6.2 References

Malcolm M A and Simpson R B (1976) Local versus global strategies for adaptive quadrature ACM Trans.
Math. Software 1 129-146

Piessens R, Mertens I and Branders M (1974) Integration of functions having end-point singularities
Angew. Inf- 16 65-68

Piessens R, De Doncker-Kapenga E, Uberhuber C and Kahaner D (1983) QUADPACK, A Subroutine
Package for Automatic Integration Springer-Verlag

7 See Also
nag 1d quad gen 1 (dOlsjc)

8 Example
To compute
1
/ Inz cos(107z) dz
0
and

' sin(10
/ sin(10z) .
0

z(1 —x)
8.1 Program Text
/* nag_ld_quad_wt_alglog_1(d0lspc) Example Program
Copyright 1998 Numerical Algorithms Group.
Mark 5, 1998.
Mark 6 revised, 2000.
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nagdOl.h>

#include <nagx01l.h>

static double f_sin(double x, Nag_User *comm) ;
static double f_cos(double x, Nag_User *comm) ;

[NP3491/6] d0lspe.5

d01spc

main()

{
static double alfal[2] = {0.0, -0.5};
static double betal[2] = {0.0, -0.5};
Nag_QuadWeight wt_func;
double a, b;
double epsabs, abserr, epsrel, result;

static NagError fail;
Nag_QuadProgress qgp;

Integer max_num_subint;

int numfunc;

NAG_DO1SPC_FUN g;

static char *Nag_QuadWeight_array/[]
{ "Nag_Alg", "Nag_Alg loga'",
Boolean success = TRUE;
Nag_User comm;

Integer wt_array_ind;

Vprintf ("dOlspc Example Program Results\n");

NAG C Library Manual

"Nag_Alg_logb","Nag_Alg_loga_logb"};

epsabs = 0.0;
epsrel = 0.0001;
a = 0.0;
b =1.0;
max_num_subint = 200;
for (numfunc=0; numfunc < 2; ++numfunc)
{
switch (numfunc)
{
case O:
g = f_cos;
wt_func = Nag_Alg_loga;
wt_array_ind = 1;
break;
case 1:
g = f_sin;
wt_func = Nag_Alg;
wt_array_ind = 0;
}
dO0lspc(g, a, b, alfalnumfunc], beta[numfunc],
wt_func, epsabs, epsrel, max_num_subint,
&result, &abserr, &gp, &comm, &fail);
Vprintf ("a - lower limit of integration = %10.4f\n", a);
Vprintf ("b - upper limit of integration = %10.4f\n", b);
Vprintf ("epsabs - absolute accuracy requested = %9.2e\n", epsabs);
Vprintf ("epsrel - relative accuracy requested = %9.2e\n\n", epsrel);
Vprintf ("alfa - parameter in the weight function = %10.4f\n",

alfa[numfunc]) ;
Vprintf ("beta
beta[numfunc]) ;

- parameter in the weight function

%$10.4f\n",

Vprintf ("wt_func - denotes weight function to be \

used = %s\n", Nag_QuadWeight_arrayl[wt_array_ind]);
if (fail.code != NE_NOERROR)
Vprintf ("ss\n", fail.message);
(fail.code != NE_INT ARG _LT && fail.code
fail.code != NE_REAL_ARG_LE && fail.code
= NE_ALLOC_FAIL)

if

fail.code

d0l1spc.6

!= NE_BAD_PARAM &&

!= NE_2_REAL_ARG_LE &&

[NP3491/6]

d0l — Quadrature

Vprintf ("result - approximation to the integral =
Vprintf ("abserr - estimate of the absolute error

Vprintf ("gp.fun_count - number of function evaluations

gp.fun_count) ;

d01spc

result) ;
abserr) ;
%41d\n",

Vprintf ("gp.num_subint - number of subintervals used = %41d\n\n",

gp.num_subint) ;
/* Free memory used by qgp */
NAG_FREE (gp.sub_int_beg_pts);
NAG_FREE (gp.sub_int_end_pts);
NAG_FREE (gp.sub_int_result) ;
NAG_FREE (gp.sub_int_error) ;
¥
else
success = FALSE;
}
if (success)
exit (EXIT_SUCCESS) ;
else
exit (EXIT_FAILURE) ;

static double f_cos(double x, Nag_User *comm)

{
double a;
double pi;

pi = X01AAC;
a = pi*10.0;
return cos(a*x);

static double f_sin(double x, Nag_User *comm)

{

double omega;

omega = 10.0;
return sin(omega*x) ;

8.2 Program Data

None.

8.3 Program Results

dOlspc Example Program Results

a - lower limit of integration = 0.0000
b - upper limit of integration = 1.0000
epsabs - absolute accuracy requested = 0.00e+00
.00e-04

Il
=

epsrel - relative accuracy requested

alfa - parameter in the weight function = 0.0000

beta - parameter in the weight function = 0.0000
wt_func - denotes weight function to be used = Nag_Alg_loga
result - approximation to the integral = -0.04899

abserr - estimate of the absolute error = 1.14e-07
gp.fun_count - number of function evaluations = 110

[NP3491/6]

d0lspc.7

dO01spc NAG C Library Manual

gp.num_subint - number of subintervals used = 4

a - lower limit of integration = 0.0000

b - upper limit of integration = 1.0000
epsabs - absolute accuracy requested = 0.00e+00
epsrel - relative accuracy requested = 1.00e-04

alfa - parameter in the weight function = -0.5000
beta - parameter in the weight function = -0.5000
wt_func - denotes weight function to be used = Nag_Alg
result - approximation to the integral = 0.53502
abserr - estimate of the absolute error = 1.94e-12
gp.fun_count - number of function evaluations = 50
gp.num_subint - number of subintervals used = 2

d0lIspc.§ (last) [NP3491/6]

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

